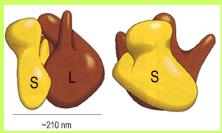
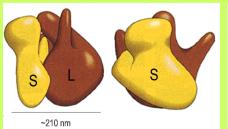
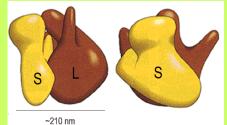

Anémie de Blackfan-Diamond Actualités



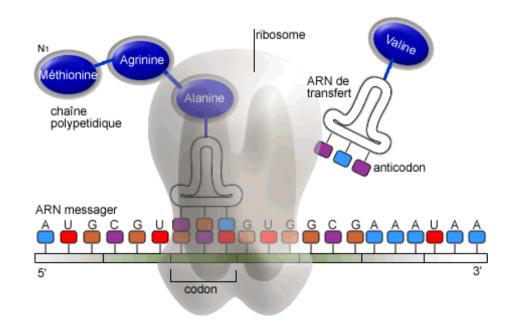

Réunion de l'AFMBD. Octobre 2014


T. Leblanc

Revue de la littérature

Oct. 2013 ► Oct. 2014: 34 articles publiés	
Revues (ABD / IBMF)	: 6 / 4
Articles cliniques:	
■ Registres (Grèce, Corée, Italie: GATA-1, US: Pearson)	: 4
 Chélation (Jeunes enfants, IRM pancréas) 	: 2
 Biologie clinique (test ARN, dysferline, Fer,) 	: 4
Article génétiques	
 Nouveaux gènes (RPS28 & TSR2, RPS29, RPL31) 	: 2
Articles « basic science »	
■ GATA-1	: 2
 Modèles animaux (zebrafish / souris) 	: 4 / 1
 Autres (dont métabolisme des AN) 	: 5

Génétique de l'ABD

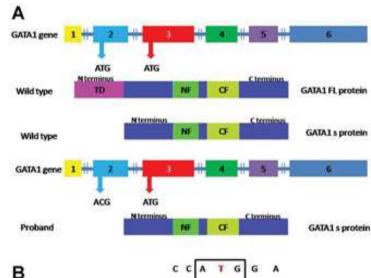

Maladie autosomique dominante

- ⇒ cas lié au sexe: mutations de *GATA-1* & de *TSR2*
- ⇒ pénétrance variable: phénotype silencieux (porteur sain de la mutation)
- ⇒ anticipation?

Gènes codant pour des PR

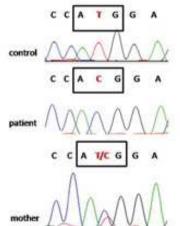
⇒ + *GATA-1*

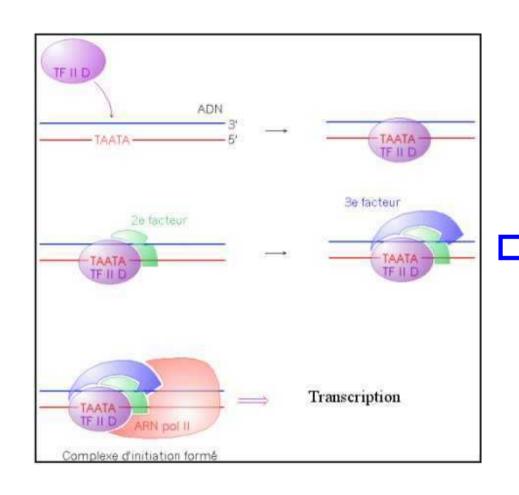
⇒ + TSR2!

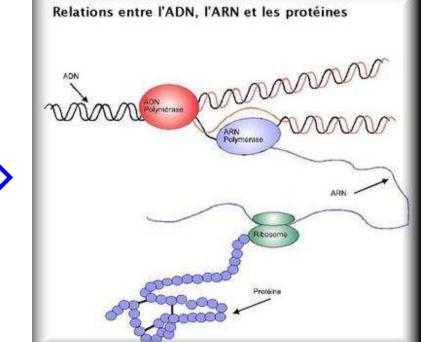

Le gène star de l'année: GATA-1

- Registre US: 2 cas (même famille)
- Registre Italien: 23 garçons: 1 cas

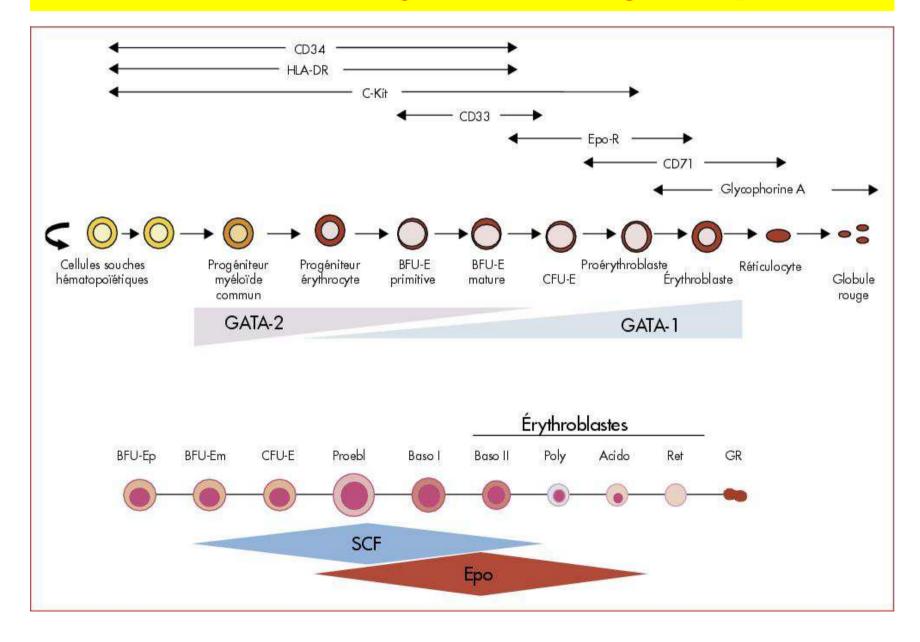
NB: SMD + monosomie 7 à 4 ans (Parrella & al, 2014)


Transcrit: isoforme court:

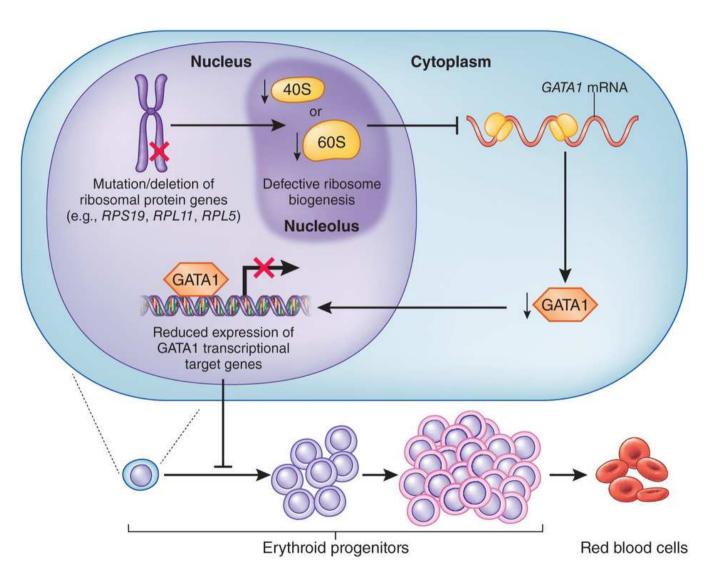



Phénotypes associés aux mutations de GATA-1:

- thrombopénie liée à l'X
- thrombopénie liée à l'X & syndrome thalassémique
- érythroporphyrie
- anémie constitutionnelle, macrocytaire ± neutropénie



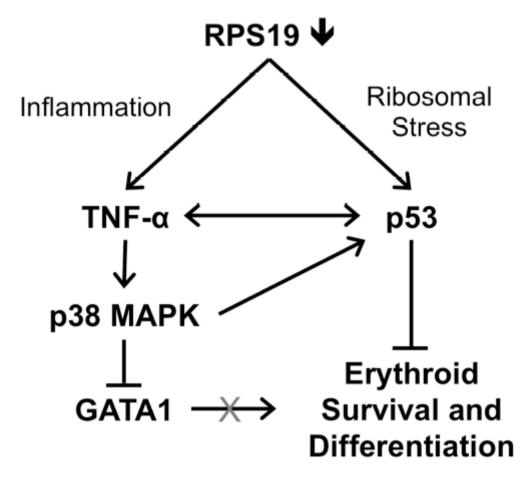
GATA-1: facteur de transcription



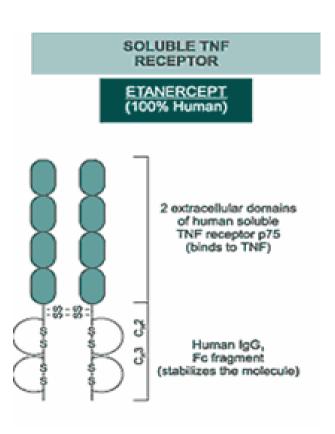
GATA-1: FDT majeur de l'érythropoïèse

Altered translation of *GATA-1* in DBA

(Ludwig & al, Nature medecine, 2014)


TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19 deficient hematopoietic progenitors

Elena Bibikova, Min-Young Youn, Nadia Danilova, Yukako Ono-Uruga, Yoan Konto-Ghiorghi, Rachel Ochoa, Anupama Naria, Bertil Glader, Shuo Lin and Kathleen M. Sakamoto



Zebrafish:

l'anémie est corrigée par un inhibiteur du TNF-α: l'étanercept

Etanercept

Indications de l'étanercept

- PR
- psoriasis en plaques & rhumatisme psoriasique
- SPA
- arthrites chroniques juvéniles

GATA-1 & ABD Nouvelles données rouvelles questions

Gène clé pour le défaut d'érythropoïèse de l'ABD?

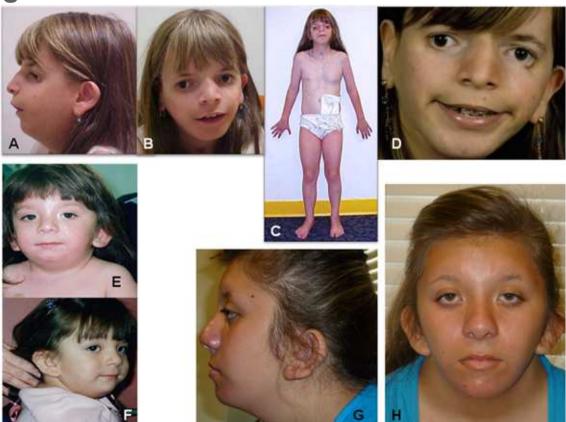
(quel que soit le gène RP muté)

Gène cible pour de nouvelles approches thérapeutiques?

Diamond—Blackfan Anemia With Mandibulofacial Dystostosis is Heterogeneous, Including the Novel DBA Genes *TSR2* and *RPS28*

Dysostoses maxillo-faciales (Sy. de TreacherCollins)

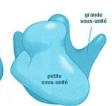
[TCS: mutations AD: TCOF1 ++ ou AR: POLR1C]


Etude de 6 familles sans gène identifié:

- RPS26 : 2

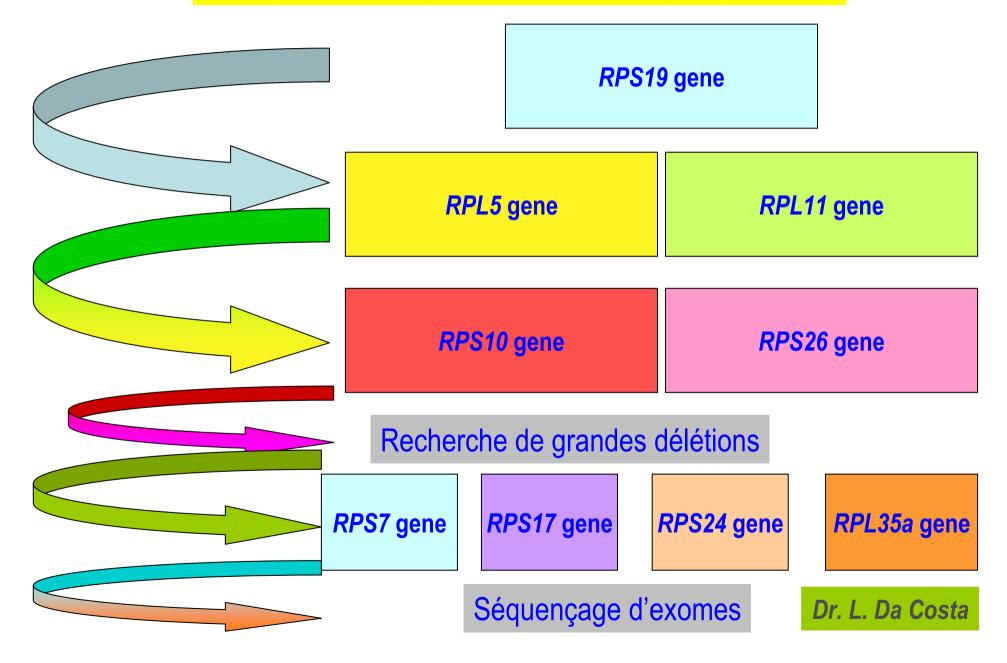
- *TSR2* : 1

- RPS28 : 2


NB: TSR2: lié à l'X

(Gripp & all, 2014)

Génétique de l'ABD


Gène	Sous-unité	Fréquence (%)	Année de publication	
RPS19	40S	25	1999	
RPS24	40S	2,5	2006	
RPS17	40S	5	2007	
RPL35A	60S	3	2008	
RPL5	60S	7	2008	
RPL11	60S	5,5	2008	
RPS7	40S	1	2010	
RPS10	40S	3	2010	
RPS26	40S	6,5	2010	
RPL26	60S	(1 pt)	2012	
RPL15	60S	(1 pt)	2013	
RPS29	40S	(2 familles)	2014	
RPS28	40S	(2 familles)	2014	
RPL31	60S	(1 pt)	2014	

n = 16!

GATA-1

TSR2

Diagnostic génétique: algorythme

Génétique de l'ABD Résultats du groupe Français

N = 282 pts inclus dans l'étude de génotypage: principaux gènes mutés:

RPS19 : 76 (26,9%)
RPL5 : 27 (9,5%)
RPS26 : 22 (7,8%)
RPL11 : 16 (5,6%)

En cours: gènes rares, délétions, CGH-Array

Û

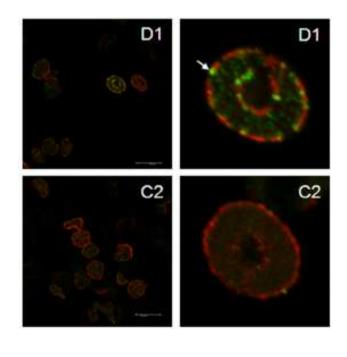
NB: 17 à 26% des pts

Tests diagnostiques (1)

Etude des protéines de la membrane du GR

Pts ABD non transfusés: N = 4

Analyse du protéome de la membrane du GR vs témoins


Nombreuses différences avec:

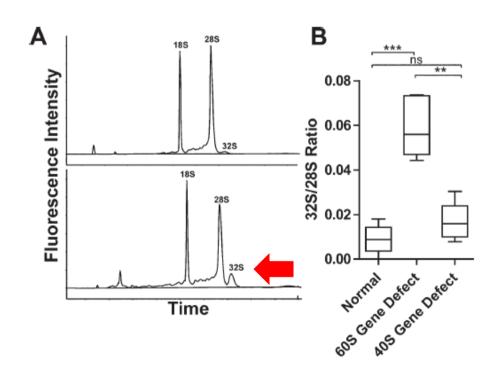
- expression de protéines normalement non exprimées sur GR matures
- +++ expression de la dysferline

Dysferline:

Protéine musculaire

[mutation du gène, DYSF: myopathies de l'adulte]
Jamais retrouvée à ce jour au niveau de la
membrane du GR

(Pesciotta & al, PlosOne 2014)


Tests diagnostiques (2)

Etude du métabolisme des ARNr

Bioanalyzer 2100 (Agilent technologies)

Limite:

détecte uniquement les cas mutés pour un gène de la grande s.u.

(Farrar & al, Am J Hematol, 2014)

Surcharge en fer chez les très jeunes enfants

N = 125 enfants de moins de 10 ans dont: ABD: 17

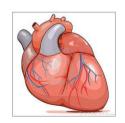
Age médian à la 1ère IRM: 6 ans

NB: âge < 6 ans: IRM sous AG

N' = 308 IRM: cf. foie, pancréas & cœur

ABD: valeur md à la 1ère IRM: 13 (idem si < 3,5 ans)</p>

Cœur: (mesure du temps de relaxation): NIe: T2* > 20 ms


☞ ABD: % de pts avec T2* anormal à la 1ère IRM: 19%

NB: **ABD** = sous-groupe le plus atteint:

pt le plus jeune avec IRM pathologique: 30 mois

A prendre en compte:

- * transfusion ici toutes les 3 semaines (seuil: 9,5 g)!
- chélation: peu d'info. : si âge > 2 ans ou si plus de 10 transfusions ou ferritine « close to » 1000 ng/ml

<u>Principale critique</u>: aucune donnée sur les modalités de chélation effectives....

Particularités de l'ABD?

- Intrinsèques ?
- Extrinsèques:
 - médecins moins prescripteurs que dans la TM?
 - très jeune âge des patients
 - espoir d'efficacité des corticoïdes?

Etude du métabolisme du fer chez des pts ABD vs TM & HbSS

N = 15 pts dépendants des transfusions dont 5 pts ABD

Age > 16 ans

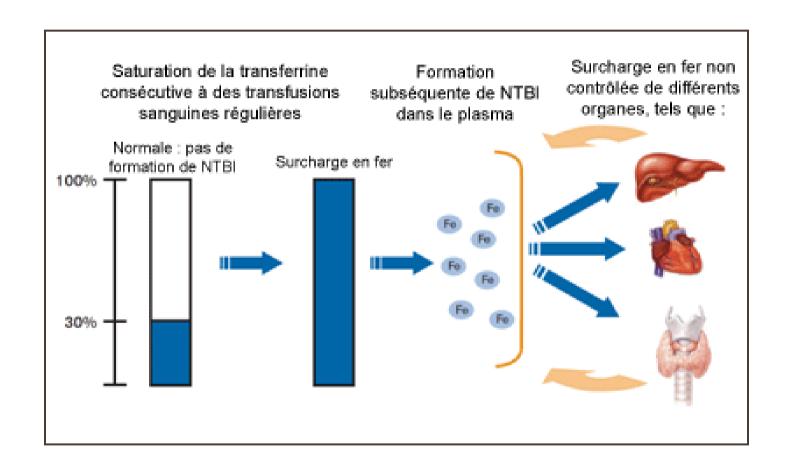
Tous surchargés en fer: ferritine > 1500 µg/L

ou LIC > 7 mg/g

Tous transfusés:

- âge de début: 0 à 9 ans

- durée: 10 à 20 ans

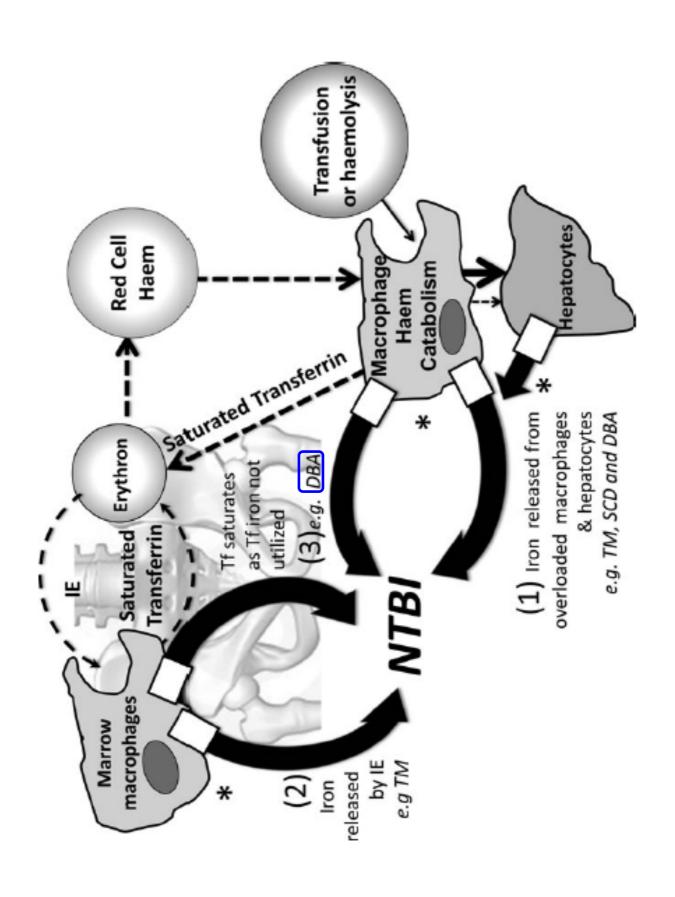

Hb SS: AH: hyperactivité médullaire

TM: érythropoïèse inefficace

ABD: déficit de l'érythropoïèse

(Porter & al, Br J Haelmatol 2014)

NTBI (Non transferrin bound iron) Fer non lié à la transferrine



Forme toxique du fer: libérée dès que CDS > 60-70%

Paramètres du bilan du fer

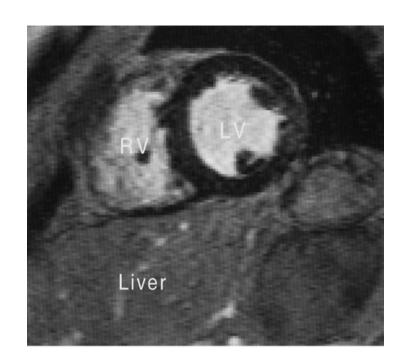
$\begin{array}{l} \text{Pre-transfusion Values} \\ \text{Median} \pm 1 \text{st \& 3rd quartile values} \end{array}$	TM $(n = 5)$	SCD $(n = 5)$	DBA $(n = 5)$	Control $(n = 5)$	anova P
NTBI (µmol/l)	1.68 (1.21, 1.79)a	-0·23 (-1·83, 0·71)b	2·50 (1·96, 3·17)a	-2·63 (-2·71, -2·63)c	0.001
Transferrin saturation (%)	100 (100, 100)a	49.7 (38.2, 91.4)b	100 (94·7, 100)a	36·0 (29·4, 39·6)c	0.002
LPI (µmol/I)	1-30 (0-86, 2-10)a	0·05 (-0·05, 0·79)a,b	0.86 (0.33, 1.67)a,b	0·01 (-0·05, 0·10)b	0.037
LIC (R2*) (mg/g dry weight)	18-3 (8-3)a	26·0 (8·0)a	6-1 (24-2)a	1.7*	0.5
Transferrin (g/l)	1.94 (1.69, 1.94)a	2·44 (2·10, 3·06)a	2-67 (2-32, 3-22)a	4-45 (3-99, 5-8)b	0.008
Ferritin (µg/l)	3251 (4680)a,b	12000 (27168)a	2150 (13984)a,b	32 (109)b	0.003
sTfR (nmol/l)†	149 (6·30, 19·7)a	8·4 (7·70, 14·3)a,b	0.00 (0.0, 0.55)*c	3.2 (2.75, 3.70)b,c	0.001
GDF15 (pg/ml)	5504 (2965, 11067)a	634 (527, 3690)a,b	467 (332, 3078)b	279 (272, 307)b	0.012
Erythropoietin (miu/ml)	41-0 (11-0, 108-0)b	28·0 (21·0, 38·0)b	2004 (1162, 3474)a	7·0 (5·0, 8·5)b	0.002
Hepcidin (nmol/I)	3-97 (21-2)b	24-3 (28-5)a	28·7 (36·3)a	0-81 (2-57)b	0.002
SLC40A1/RPL27 (mRNA)	41 (32-2, 195)a	25 (5, 848)a	75 (18, 165)a	56 (21, 476)a	0.820
Hepcidin/Ferritin#	1.7 (0.71, 5.57)a	1-6 (1-06, 2-9)a	12·4 (3·2, 66·4)b	23-2 (15-2, 93-0)b	0.023
hsCRP (mg/l)	0-9 (0-25, 3-35)a,b	3-2 (2-31, 5-25)a	1-8 (0-3, 9-05)a,b	0-34 (0-21, 0-75)b	0.041

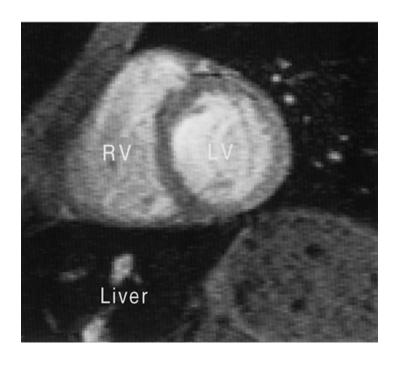
NTBI, non-transferrin bound iron; LPI, labile plasma iron; LIC, liver iron concentration; sTfR, soluble transferrin receptor; GDF15, growth differ-

Rappel:

Surcharge débutante:

Foie +++


Normal : $20 \mu M/g$


Faible surcharge : 50 µM/g

Surcharge marquée : 120 µM/g

Surcharge majeure : 350 µM/g

Cœur: en théorie: atteinte chronologiquement décalée

Chélation chez le petit enfant

A débuter tôt +++:

- dès 5 transfusions ou Ferritine > 500 μg/L ?

Modalités:

- DESFERAL si âge < 2 ans

NB: doses doivent être < à cet âge: 20-30 mg/kg/perfusion

- EXJADE OK si âge > 2 ans

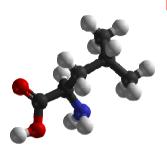
Indications de l'IRM? A discuter au cas par cas mais:

- -« lourd » chez le petit enfant (impose souvent une anesthésie générale)
- A priori pas utile chez le petit enfant bien chélaté et qui n'a jamais eu de ferritine très élevée mais...

ABD: essais cliniques

Leucine

Essai en cours aux USA: pas de donnée disponible


Sotatercept

Essai en cours aux USA: pas de réponse aux paliers testés

Activation prochaine en France

Euro-DBA Freiburg, Sep. 2014

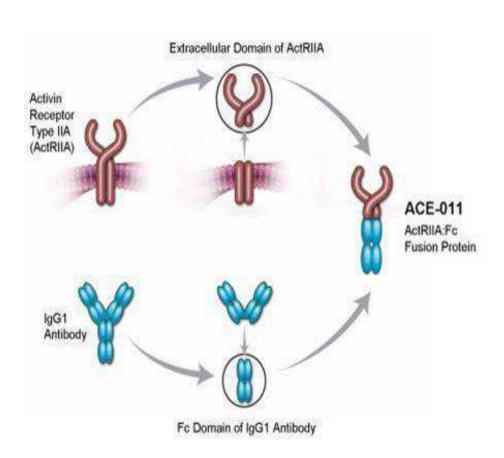
Faut il utiliser la Leucine?

Toujours très peu de données: à ce jour la seule publication date de 2008 avec un unique enfant en RP...

Toxicité liée à l'usage prolongé de leucine?

Innocuité des préparations disponibles sur internet?

Problème: comment éviter ou, si déjà effective, encadrer l'auto-prescription...


Nouvel essai clinique: sotatercept

Nouvel agent proérythropoïétique

Mode d'action?

Essais cliniques:

- Anémie post chimiothérapie
- Thalassémies (NEM, Paris)
- ABD (New-York)

3448: A Phase 2a, Open-Label, Dose-Finding Study To Determine The Safety and Tolerability Of Sotatercept (ACE-011) In Adults With Beta (β)-Thalassemia: Interim Results

Monday, December 9, 2013, 6:00 PM-8:00 PM *Maria-Domenica Cappellini & al*

Conclusion: "Based on these preliminary data, sotatercept administered subcutaneously every 3 weeks may improve anemia via a novel mechanism of action with a favorable safety profile"

"Current data suggest a dose-dependent response that supports further evaluation"

Mode d'action du sotatercept Etude chez les patients thalassémiques

Ligand trap

Parmi les ligands du récepteur ActRIIA: © GDF11

Cytokine bloquant la différenciation érythroïde terminale

Erythroid progenitors GDF11 Red blood cells **EPO** ↑GDF11expressing cells ↑ Hypoxia Inefficient erythropoiesis Anemia B-thalassemia Sotarcept ACE-536 Red blood cells b GDF11 **EPO** ↓GDF11-↑ Hypoxia expressing cells Anemia **B-thalassemia** Erythropoiesis (Dussiot & al, Nat Medecine, 2014)

Pour l'ABD?

Etude SOTABD

Phase 1/2, Etude ouverte de l'efficacité et de la tolérance Blackfan-Diamond avec dépendance transfusionnelle du sotatercept chez l'adulte atteint d'une anémie de

P110910/ EudraCT 2012-001210-42

SYNOPSIS

Investigateur coordinateur

Service d'hématologie pédiatrique Dr Thierry LEBLANC

Hôpital Robert Debré

Paris

Tel: +33 (0)1 40 03 41 85 Tel sec. +33 (0)1 71 28 25 0035 ou +33 (0)1 40 03 53 88 **Fax**: +33 (0)1 40 03 47 40

E-mail: thierry.leblanc@rdb.aphp.fr

SOTABD

Critères d'inclusion

- 1. Age ≥ 18 ans.
- 2. ABD diagnostiquée selon les critères établis par la conférence internationale e consensus sur l'anémie de Blackfan- Diamond (Vlachos, 2008).
- 3. Dépendance à la transfusion (définie par ≥ 2 unités de globule rouge en moyenne par 28 jours sur une période de 84 jours précédant l'inclusion dans la recherche) (Gale, 2010).
- 4. Certains patients ABD présentent une dépendance à la transfusion mais, en raison d'une petite réticulocytose persistante, peuvent n'être transfusé que toutes les 5 à 6 semaines. Ils pourront être inclus dans l'étude si cela est établi sur une période de 12 mois.
- Indice fonctionnel ECOG 0-1.
- 6. Pour les femmes en âge de procréer: utilisation de méthodes de contraception hautement efficaces (contraception hormonale, dispositif intra-utérin, ligature des trompes, abstinence sexuelle ou partenaire ayant subi une vasectomie) pour au moins 28 jours avant et durant toute sa participation à la recherche et pendant 210 jours suivant la dernière injection de sotatercept.
- 6. Pour les hommes : Accord sur le port du préservatif en cas de rapport sexuel avec une femme en âge de procréer durant toute sa participation à la recherche et pendant 210 jours suivant la dernière injection de sotatercept.
- 7. Accord du patient pour adhérer au planning de visites et aux procédures prévues pour la recherche
- 8. Consentement éclairé signé
- 9. Bénéficiaire de la sécurité sociale

SOTABD

Promotion DRC AP-HP avec aide de CELGENE

Essai de phase II avec paliers de dose

Etude monocentrique: venue toutes les 3 semaines au CIC de l'hôpital Saint-Louis à Paris

Administration par voie SC

ABD: structuration des filières de soin & de la recherche

OFABD: observatoire (« registre »)

MaRIH : filière de soins: vient d'être labélisée

EURO-DBA: groupe Européen

OFABD

Pour mémoire: cohorte mise en place par Gil Tchernia en 1996

OFBAD: observatoire agréé par la CNIL

N = 305 (08/2014)

Nombre d'ADN reçus par an : ± 20-25

The state of the s

2005-2010: 793.000 à 833.000 naissances par an

⇒ 8 à 15 pts ABD?

Aplasies médullaires constitutionnelles et acquises (AM) Anémie de Blackfan-Diamond (ABD)

Cytopénies auto-immunes (CAI) : anémies hémolytiques autoimmunes (AHAI), purpura thrombopénique immunologique (PTI), syndrome d'Evans (SE)

Neutropénies chroniques de l'enfant et de l'adulte (NC)

Micro-angiopathies thrombotiques (MAT)

Histiocytose langerhansienne, Erdheinm-Chester, Rosai Dorfman (HL)

Déficit immunitaire humoraux de l'adulte (DEFI), proliférations rares (maladie de Castelman, proliférations LGL)

Euro-DBA

Lydie Da Costa, Marcin Wlodarski & Alyson MacInnes

"DBA: building global bridges"

Meeting in Freiburg, 19-20 Sept 2014

http://www.eurodba.eu

Euro-DBA

Soins

Guidelines:

BJH, 2008

- Diagnostic
- Traitement
- Aspects spécifiques

Registre européen

Etudes cliniques

Recherche

Modèles animaux

Biosynthèse des ribosomes

Nouveaux agents

.../...

Biobanking

Conclusion (1)

Encore des gènes (n = 16) avec, pour la 1ère fois, implication d'un gène codant pour une protéine régulatrice de la biosynthèse des ribosomes

⇒on progresse vers notre but: identification d'une mutation pour tous les patients

Nombreux travaux de recherche fondamentale qui ouvrent de nouvelles pistes pour la physiopathologie de l'ABD et donc pour de nouvelles approches thérapeutiques

Conclusion (2)

Etudes spécifiques de la surcharge en fer chez les patients ABD: données pour des recommandations spécifiques pour la chélation?

+++ pour les petits enfants (moins de 2 ans)

Essais cliniques en cours ou débutant

